Young's Double slit experiment

By

Dr.V.Ragavendran,
Assistant Professor of Physics,
SCSVMV Deemed University

Nature of Light

- Corpuscular theory of light by Newton.
- Thomas Young's experiment in 1805 proved the wave nature of light by observing the phenomenon of interference.

Thomas Young (1773-1829)

Press | Esc | to exit full screen

Introduction

• The experiment is named for its inventor, Thomas Young (1773-1829)

 This experiment strongly demonstrates the wave nature of light.

Double slit

Screen

Light beam

Light: A Particle or Wave

Particle

 If light acts as a particle, only two slits will appear on the screen

Wave

 The light will diffract and interfere, making many fringes

Double Slit Experiment Setup

Monochromatic Source

Double Slit Experiment

Theory

Double Slit Experiment

Result

Result

Example

Light hits two slits separated by 0.05 m. If 25.32 µm separates the bright fringes on the screen that is 2m distant, what is the wavelength of light being used?

 $D \sin \theta = m \lambda$

$$0.05 \quad \frac{^{25.32}}{^{2}} = 1 \quad \lambda$$

$$\lambda = 633$$
nm

Conclusion

Light behaves like a wave; interference

 We used this property to calculate the wavelength of light

Light also behaves like a particle

 This behavior is described in the dual wave/particle theory